
GUIDS Document

For a Virtual Placement Agency

BluePrint Team
Pheonia Chang

Thomas Lai
Phoebe Lam

Natalie McGee
Karim Nanji

Martin Palmer

'Table of Contents'

2

Table of Contents

G Document
Application Goals and Objectives 4
Use Cases 4
Object Model 14
Implementation Class Diagram 14
Table of Business Object Methods 15
Table of Object Relationships 16

U Document
Application Goals and Objectives 18
User Interface: Maintain Companies 19
User Interface: Maintain Positions 22
User Interface: Maintain Applicants 27
User Interface: Find Position for Applicant 24
User Interface: Apply for Online Position 28

I Document
Application Goals and Objectives 32
Application Architecture 33
Component Distribution 33
Deployment Diagram 35

D Document
Application Goals and Objectives 37
Type of Database 37
Entity Relationship Diagram 38
Table of Fields and Descriptions 38
Table of Queries Required in the System 39

S Document
Application Goals and Objectives 42
Code Estimates 42
Implementation Plan 44
Coding Conventions 46
Quality Assurance 51

‘G

3

‘G

4

1. Application Goals and Objectives

Main Purpose

The goal of this project is to develop an enterprise application that will allow the recruiting staff at
Virtual Placement Agency (VPA) to manipulate information on job openings and placements
managed by the agency. This will require the tracking of job postings, hiring companies, and
applicants.

Business Objectives

• To track and maintain the three major components of the business : Companies,
Applicants, Positions.

• Match applicants to available positions.
• Allow applicants looking for employment to access information on available job openings

by accessing the VPA's website.

Technical Objectives

• Formalize the design of the software using UML modeling techniques and the GUIDS
methodology.

• Follow and object-oriented design methodology to ensure the application is properly
defined before it is built.

• Use Microsoft Windows GUI Standards to develop a user-friendly interface.
• Provide a software environment that operates effectively with Microsoft Windows NT

Server, Windows 98 and Access 97.
• Design scalable application that can be expanded as the agency grows.
• Develop a distributed component-based system that runs on a client/server network .
• Develop Active X components, using Visual Basic 6, that are managed by using Microsoft

Transaction Server (MTS).
• Creation of the web enabled application using Active Server Pages (ASP).

2. Use Cases

The following use cases outline the typical business processes the Placement Application
will need to perform. These will be used to validate design decisions taken throughout
system development.

‘G

5

Figure 1—Use Case Diagram for Placement Application

‘G

6

Use Case—Maintain Companies

Section—Main
Actors— Recruiters

Purpose—Allows the agency to keep profiles on their client companies for
current and future business.

Overview—The agency keeps a list of client companies with staffing needs
that fit the high-tech niche of the agency. When a company calls the
agency for the first time to post a position, that company will be added to
the list. Sometimes the agency will add other known high-tech companies
that could benefit from the services provided by the agency (even if they
have yet to do any business with the agency).

Sometimes company profiles change, such as when the company
relocates, changes its name or phone number. The system will allow the
modification of company profiles to keep them up to date.

Companies are not to be deleted from the system.

Typical Course of Events

1. This use case begins when a Recruiter issues the “Maintain
Companies” command.

2. Recruiter chooses whether they want to add a new company or modify
the profile of an existing company.

3. To add a new client company, see section “Create Company.”

4. To modify the profile of a company, see section “Modify Company
Profile.”

Section—Create Company

1. Recruiter issues the “Create Client Company” command.

2. Recruiter enters the company profile including the company name,
phone number, address, city, state/province, zip/postal code, and any
other notes relevant to that company.

3. The Recruiter saves the information.

4. System Response—The company is added to the list of companies.

Alternative Courses

Line 3—Invalid data such as incomplete phone number or blank company
name. Indicate error and allow reentry.

‘G

7

Section—Modify Company Profile

1. The Recruiter selects the company from the list of client companies
and issues the “Modify Company” command.

2. System Response—Shows the company profile of the selected
company.

3. Recruiter modifies the selected company’s profile.

4. Recruiter saves the information.

5. System Response—The company profile is updated.

Alternative Courses

Line 4—Invalid data such as incomplete phone number or blank company
name. Indicate error and allow reentry.

Use Case—Maintain Applicants

Section—Main
Actors—Recruiters

Purpose—Allows the agency to keep a profile on applicants with the
intention of placing them into current and future positions within the
client companies.

Overview—The agency manages a list of all applicants and keeps track of
whether they are currently available for placement or not.

New applicants can come into the agency to fill out applications or send
applications to the agency via fax, e-mail, or regular mail. These
applications are submitted into the system by a Recruiter. This creates an
applicant profile that includes name, address, e-mail, phone, skill set, and
other relevant notes. New applicants are considered available.

The agency hopes to maintain relationships with applicants over a long
period of time. It serves the agency well to place the same applicant
multiple times over the course of his or her career. The system must
handle the changes to an applicant’s profile such as a change in name,
address, phone number, skills, etc.

The agency will maintain a history on all applicants. Therefore, they are
not to be deleted from the system.

Typical Course of Events

1. This use case begins when a Recruiter issues the “Maintain
Applicants” command.

2. Recruiter chooses whether they want to submit an application that
they received or make a change to an applicant profile.

‘G

8

3. To add a applicant, see section “Submit Application.”

4. To modify the profile of an applicant, see section “Modify Applicant
Profile.”

Section—Submit Application

1. Recruiter issues the “Fill Out Application” command.

2. System Response—Supplies an application form.

3. Recruiter enters the new applicant’s first name, last name, address,
city, state/province, zip/postal code, phone, e-mail, whether they are
currently available (yes or no) and other relevant notes about the
applicant.

4. Recruiter issues the “Select Skills” command.

5. System Response—Shows the list of industry skills maintained by the
Agency (see the “View Skills” Use Case).

6. Recruiter selects the skills that apply to the applicant.

7. Recruiter saves the application.

8. System Response—Applicant is created from the information in the
application form.

9. System Response—The applicant is inserted in the list of applicants.

Alternative Courses

Line 7—Recruiter is missing critical data. May cancel submitting the
application.

Line 8—Application is invalid due to incorrect profile data (e.g., blank
name, improper phone format, etc.) or no skills selected. Indicate errors
and allow reentry.

Section—Modify Applicant Profile

1. Recruiter selects the applicant from the applicant list and issues the
“Modify Applicant Profile” command.

2. System Response—Shows the applicant’s profile including the name
(first, last), address, city, state/province, zip/postal code, phone, e-
mail, whether they are currently available (yes or no), and other
relevant notes.

3. Recruiter modifies the applicant’s profile as appropriate.

4. Recruiter issues the “Select Skills” command.

‘G

9

5. System Response—Shows the list of industry skills maintained by the
Agency (see the “View Skills” Use Case).

6. Recruiter adds and removes the skills of the applicant as appropriate.

7. Recruiter saves the application.

8. System Response—Applicant profile is updated.

9. System Response—The applicant is inserted in the list of applicants.

Alternative Courses

Line 4—Applicant may not need their skill set modified. Skip Lines 4, 5,
and 6.

Line 7—Recruiter may be missing critical data. May cancel submitting
application.

Line 8—Application is invalid due to incorrect profile data (e.g., blank
name, improper phone format, etc.) or no skills selected. Indicate errors
and allow reentry.

Use Case—Maintain Positions

Section—Main
Actors—Recruiters

Purpose—Allows the Agency to view, open, and cancel advertised
positions.

Overview—The Agency keeps a list of positions advertised by companies.
The agency is asked by a client company to supply applicants for a new
position at the company. If the company is new to the agency, they are
entered into the system (see “Maintain Companies” use case). Otherwise,
a Recruiter enters the information about the position including the
position’s title, job description, company name, date the position opened,
contact person, phone, and the required skills.

Once a position is closed, it is not reopened. Instead, a new position is
created in the manner stated above.

Sometimes a company cancels a position because it was filled by someone
supplied by another agency or by someone that the company found on
their own. Other times the position is eliminated because a department is
eliminated or a project is postponed or cancelled. Instead of deleting the
position, the system will simply mark it closed, store the reason for
closure, and the close date.

‘G

10

Typical Course of Events

1. This use case begins when a Recruiter issues the “Maintain Positions”
command.

2. Recruiter chooses whether they want to open a position, view
positions, or cancel a position.

Section—View Positions

Typical Course of Events

1. A Recruiter issues the “View Positions” command.

2. System Response—Shows a list of client companies.

3. The Recruiter selects a company.

4. System Response—All positions for this company are displayed in a
list.

5. The Recruiter selects the position from a position list.

6. System Response—The position’s complete profile is displayed—
Position Title, Description, Company Name, Contact Name, Contact
Phone, Status, Date Position Opened, Date Position Closed, Reason
Closed, Required Skills, and Notes.

Section—Open Position

Typical Course of Events

1. A Recruiter issues the “Open Position” command.

2. System Response—A list of client companies is shown.

3. Recruiter selects the company.

4. Recruiter enters information about the position.

5. Recruiter issues the “Select Skills” command to assign the required
skills for the position.

6. System Response—Shows the list of industry skills.

7. Recruiter selects the required skills from the list.

8. Recruiter saves the position.

9. System Response—Position is given the status “Open” and is stored.

‘G

11

Alternative Courses

Line 8—Position is invalid (no skills selected, etc.);indicates error. May
cancel opening the position.

Section—Cancel Position

Typical Course of Events

1. A Recruiter issues the “Cancel Position” command.

2. System Response—Show the list of open positions.

3. Recruiter selects the position to close from the list of open positions.

4. System Response—Show the position’s complete profile. Ask for the
reason the position is being closed and the close date.

5. Recruiter enters the reason why the position is closed and the date it
was closed.

6. Recruiter saves the information.

7. System Response—Sets the position status to “Closed”, sets the reason
for closure and the close date to the ones provided by the recruiter,
and stores the position.

Use Case—Find Positions for Applicants
Actors—Recruiters

Purpose—To help Recruiters become more efficient in finding positions
that best suit the applicants.

Overview—Recruiters work closely with applicants. They want to place
them before someone else does or before they find employment on their
own. To help in placing an applicant, the Recruiters need a list of open
positions for which the applicant is qualified. The positions are sorted by
best fit (i.e., the position with the highest percentage of matching skills on
top).

Typical Course of Events

1. This use case beginbs when a Recruiter issues the “Find Positions for
Applicant” command.

2. System Response—Display the list of available applicants.

3. Recruiter selects an applicant from the list of available applicants and
issues the “Find Possible Positions” command.

4. System Response—Searches the list of open positions and selects only
those for which the applicant is qualified (i.e., positions where the

‘G

12

applicant has one or more skills among the required skills for the
position).

5. System Response—Display the positions sorted by best fit.

Use Case—Maintain Skills
Actors—Database Administrator

Purpose—To maintain a list of skills relevant to the industry of the
agency’s client companies. This list is determined by the staffing
requirements of the client companies and is used to provide consistency
when assigning skill sets to positions and applicants.

Overview—Typically, the agency staffs positions with titles such as
programmers, analysts, system administrators, and database
administrators. The Recruiters focus on finding applicants with skill sets
that are relevant to these types of positions. For example, programmers
could list Visual Basic, Java, and C++ in their skill set and DBAs could list
SQL Server, Informix, and Oracle. Examples of skills added within the last
5 years are Java, MTS, and IIS.

The niche of the agency is high-tech, so the agency must continually adapt
to fast changing skill sets required in positions posted by client
companies. A skill needs to be added to the list of industry skills when a
company posts a position requiring a skill that the agency has never dealt
with in the past.

Typical Course of Events
The Database Administrator handles this function directly using
Microsoft Access.

Use Case—View Skills
Actors—Recruiters

Purpose—To allow Recruiters to view skills for positions or applicants.

Overview—Typically, the agency staffs positions with titles such as
programmers, analysts, system administrators, and database
administrators. The Recruiters focus on finding applicants with skill sets
that are relevant to these types of positions. For example, programmers
could list Visual Basic, Java, and C++ in their skill set and DBAs could list
SQL Server, Informix, and Oracle. Examples of skills added within the last
5 years are Java, MTS, and IIS.

Typical Course of Events

1. This use case begins when a Recruiter issues the “View Skills”
command.

2. System Response—Shows the list of industry skill titles.

‘G

13

Use Case—Apply for Position
Actor—Applicant

Purpose—To allow an applicant, via the Web, to apply for a position.

Overview—Virtual Placement Agency realizes that many of its registered
applicants use the Web as a tool to search for jobs. Therefore, Virtual
Placement Agency has “opened up” itself via the Web to its applicants. It
allows the applicants to browse all the positions currently available and
apply for only those they are interested in.

Typical Course of Events

1. This use case begins when an applicant issues the “View List of
Positions” command.

2. System Response—A list of all the agencies’ positions is displayed.

3. The Applicant selects a position to display.

4. System Response—A position profile is displayed.

5. The Applicant issues the “Apply” command.

6. System Response—The current date and position ID are displayed.

7. The applicant enters their ID and submits the information.

8. System Response—A message is displayed indicating the information
was saved.

‘G

14

3. Object Model

Virtual Placement Agency Object Model

4. Implementation Class Diagram

Virtual Placement Agency Implementation Class Diagram

1

cCompany

colSkills

cSkill

cPosit ion

1 0..*

0..*

0..*

cApplicant

0..*

0..*

0..*0..* 0..*0..*

0..*

0..*0..*

0..*
0..*

0..*

cCompany
ID : Integer
Name : String
Phone : String
Address : String
City : String
State/Province : String
Zip/PostalCode : String
Notes : String

Save()
IsValid()
GetList()
GetProfile()

cApplicant
ID : Integer
FirstName : String
LastName : String
Address : String
City : String
State/Province : String
Zip/PostalCode : String
Phone : String
Email : String
Available : Boolean
Notes : String

GetSkillsList()
Save()
IsValid()
GetList()
GetProfile()
GetAvailableList()
GetAssociatedSkills()

cPosit ion
ID : Integer
Tit le : String
Descript ion : String
ContactName : String
ContactPhone : String
Status : Boolean
DateOpened : String
DateClosed : String
ReasonClosed : String
Notes : String

GetCompanyList()
GetPosit ionsPerCompany()
GetProfile()
GetSkillsList()
GetList()
Save()
IsValid()
Cancel()
GetOpenStatusList()
GetAvailableApplicantsList()
Search()
SubmitApplication()
GetAssociatedSkills()

0..* 0..*0..* 0..*1 0..*1 0..*

cSkill
Name : String

GetList()

0..*

0..*

0..*0..*

0..*

0..*

0..*

colSkills

Add()
Remove()
Item()
Count()

‘G

15

5. Table of Business Object Methods

Class Method Description

Save() Called when the new or modified client
company information needs to be updated
to the database.

IsValid() Private method called by the Save()
method; Validates the data being saved to
avoid database data conflicts.

GetList() Called when a list of all client companies is
required.

cCompany

GetProfile() Used to retrieve a specific client company's
profile.

GetCompanyList() Called when list of all the client companies
is required. Calls the GetList from
cCompany.

GetPositionsPerCompany() Used to retrieve all positions associated
with a selected company.

GetProfile() Used to retrieve a specific position profile.

GetSkillsList() Called when list of all skills is required.
Calls the GetList() method from cSkill.

GetList() Called when list of all positions is required.

Save() Called when the new or modified position
information needs to be updated to the
database, including associated skills.

IsValid() Private method called by the Save()
method; Validates the data being saved to
avoid database data conflicts.

Cancel() Called when cancel position command is
issued. Updates position status
(closed/open), saves the reason why
position closed and date closed.

GetOpenStatusList() Called when list of positions with an open
status is required.

GetAvailableApplicantsList() Called when list of available applicants is
required. Calls the GetAvailableList()
method from cApplicant.

Search() Searches the database for positions with a
matching skills. Called when the find
possible positions command is issued.

SubmitApplication() Called by the internet based application
(Active Server Pages) when positions are
applied for via the web; adds the current
date, position ID and applicant ID and
saves the data to the database.

cPosition

GetAssociatedSkills Used to retrieve a list of associated skill
from the database. A private method
called by the GetProfile() method.

‘G

16

GetSkillsList() Called when list all of the skills is required.
Calls the GetList() method from cSkill.

Save() Called when the new or modified applicant
information needs to be updated to the
database, including associate skills.

IsValid() Private method called on Save() method;
Validates data being saved to avoid
database data conflicts.

GetList() Called when list of all applicants is
required.

GetProfile() Used to retrieve a specific applicant profile.
GetAvailableList() Called when list of available applicants is

required.

cApplicant

GetAssociatedSkills() Used to retrieve a list of associated skill
from the database. A private method
called by the GetProfile() method is called.

cSkill GetList() Called when list of all skills is required.
Add() Adds object references to skills collection.
Remove() Removes object references to skills

collection.
Item() Returns a specific item in the collection.

colSkills

Count() Returns the total number of items in the
collection.

6 Table of Object Relationships

Class Relationship Description

cCompany –
cPosition

Aggregation The Company “may have ” 0 or many positions.
Without the company, there would not be a positions.

cPosition –
cApplicant

Association Each applicant can apply for many positions; each
position can have more than one applicant.

cApplicant –
cSkill

Unidirectional
Association

An applicants “may have” 0 or many skills.

cPosition –
cSkill

Unidirectional
Association

An position “may have” 0 or many associated skills.

‘U’

17

‘U’

18

1. Application Goals and Objectives

Main Purpose

The goal of this project is to develop an enterprise application that will allow the recruiting staff at
Virtual Placement Agency (VPA) to manipulate information on job openings and placements
managed by the agency. This will require the tracking of job postings, hiring companies, and
applicants.

Business Objectives

• To track and maintain the three major components of the business : Companies,
Applicants, Positions.

• Match applicants to available positions.
• Allow applicants looking for employment to access information on available job openings

by accessing the VPA's website.

Technical Objectives

• Formalize the design of the software using UML modeling techniques and the GUIDS
methodology.

• Follow and object-oriented design methodology to ensure the application is properly
defined before it is built.

• Use Microsoft Windows GUI Standards to develop a user-friendly interface.
• Provide a software environment that operates effectively with Microsoft Windows NT

Server, Windows 98 and Access 97.
• Design scalable application that can be expanded as the agency grows.
• Develop a distributed component-based system that runs on a client/server network .
• Develop Active X components, using Visual Basic 6, that are managed by using Microsoft

Transaction Server (MTS).
• Creation of the web enabled application using Active Server Pages (ASP).

‘U’

19

2. User Interface: Maintain Companies

Screen Shot

‘U’

20

Table of Components

Control Name of Control Description

File→Close All Forms Close all active forms

File→Save Save all fields of the active form to the database

File→Exit Unload all forms and exit

Edit→Close Positions Opens the Close Position form.

View→Company Opens the company form

View→Applicant Opens the applicant form

View→Position Opens the position form

View→Industry Skills Opens the industry skills form.

Search→Positions
Form Applicants

Open the search position form

Menu

Help→About Shows information about version number.

Add Clears and enables all fields of the active form and
allow the recruiter to enter new information

Save Saves all fields of the active form to the database

Edit Enables all fields of the active form and allows recruiter
to edit information

Cancel Cancels the current entry.

Find Positions Searches open positions for which the applicant is
qualified

Tool Bar

Close Position Opens the close position form

List View Company Displays a list of all client companies

Tab Strip Company Allows user to flip to and from the notes form view.

Combo
Box

Province Used to select and display the province or state.
Note: The combo box contains a complete list of
Canadian provinces and states. This field will be filled
by selecting a province /state from the list.

ID This number is assigned automatically when a new
company is added. This will ensure unique identifiers
are assigned to each company.

Name Displays the name of the selected company; allows
recruiter to enter information to this field.

Street Displays the company's street address; allows a
recruiter to enter information in this field.

City Display the city in which the company is located; allows
a recruiter to enter information in this field.

Text Box

Zip This field will display the postal code. If a nonnumeric
code is added, it will be unformatted before the text is
stored to the database. When the data is retrieved from
the database it will be reformatted. (e.g. A#A-#A#)

‘U’

21

Phone This field will automatically format numbers to the
required layout. The format mask will also stop the
entry of any nonnumeric key. (e.g. (###) ###-####)

Notes Multiple lines of text can be added. Up to 32 kilobytes
of text can be added

Feature List

View Companies
To view the company form the user may select the company button from
the tool bar, select View → Company from the menu bar or use the
shortcut key Ctrl-W.

On the loading of the form the first record set in the database will be
loaded, populating the data fields. The list view will also be populated
with a complete list of all the companies in the database.

Selecting and viewing company profiles:
To view a company's profile, use the mouse to select the company name in
the list view. Once the item has been highlighted the company profile is
returned from the database.

Adding, Editing and Saving Company Profiles
To add a new company to the system select the add button from the tool
bar. The system will respond by clearing the form and enabling the text
boxes for data entry. The ID field will remain disabled as this value is
supplied by the database.

When all the information has been entered the data needs to be validated
and saved to the database. This is accomplished by selecting the save
button on the tool bar, by selecting File →Save from the menu bar or by
using the shortcut key Ctrl-S. If there are any required fields that have not
been entered correctly the system will return to the form and the labels of
the problem fields will be in red. Once the invalid fields have been
corrected, select save again to save the data to the database. On a
successful save, the new company will be added to the company list view
and the text boxes will be disabled.

If a selected record set requires editing, the edit function is activated. This
can be accomplished by selecting the Edit button from the toolbar. The
system responds by enabling the text boxes. On the completion of the edit,
the save function is used to save the data to the database. Before saving
the data the system will validate all the data fields.

‘U’

22

 3. User Interface: Maintain Positions

Table of Components

Control Name of Control Description

Tree View Company Displays a list of client companies.

Tab Strip Position Allows user to flip to and from the notes form view.

ID Entry of the company ID.
Note: The AutoNumber of the database fills this field. This
will ensure unique identifiers are assigned to each
company.

Position Display the selected position title; allows the recruiter to
enter information to this field.

Description Display the selected position’s job description; allow
recruiter to enter information to this field.

Opened Display the selected position's Open Date; allow recruiter
to enter information to this field. e.g. MM/DD/YY

Closed Display the selected position's Close Date; allow recruiter
to enter information to this field. e.g. MM/DD/YY

Text Box

Reason Displays the reason a position has been closed.

‘U’

23

Contact Displays the name of a contact person at the company that
is offering the position; allows the recruiter to enter
information to this field

Phone This field will automatically format numbers to the
required layout. The format mask will also stop the entry
of any key other than numbers and backspace.
e.g. (###) ###-####

Notes On selection, multiple lines of text can be added. Up to 32
kilobytes of text can be added

Label Company Displays the name of a selected company.

Check Box Status Displays the position status; allows the recruiter to select
the status of a position. If unchecked, the word closed
appears.

Skill Displays a list of all the industry skills.List View

Required Skills Displays a list of required skills selected from the industry
skills list box.

Add Adds selected industry skill to list of required skills

Remove Removes selected industry skill from list of required skills

Command
Button

Close Position Removes position from list of open positions and sets
position status to Closed

Feature List

View Positions
To view the positions form the recruiter selects Positions from the toolbar,
View→Position from the menu bar or uses the shortcut keys Ctrl+E. A list
of client companies is made available to the recruiter. Once a company is
selected, all positions for this company are displayed. A specific position
may be selected from the list in order to display that position's profile.

Open Positions
The recruiter selects the positions from and then a client company. Once a
company is selected, the recruiter selects the Add button from the toolbar
to enters information on the new position. The list of industry skills allows
the recruiter to choose the associated skills. The recruiter may then save
the information to the database and the new position is added to the list
of positions in the company. The position is automatically given an
"Open" status. The cancel button on the toolbar is used to cancel the
opening of a new position.

Cancel Position
Upon selecting close position from the menu bar (Edit→Close Positions)
or selecting Close Position on the toolbar, the Close Positions form is
loaded and a list of open positions is displayed. The recruiter selects the
position that is to be closed, displaying the profile of the position. The
recruiter presses the Close Position button on the form. and the system
prompts for the reason for closing the position as well as the date of

‘U’

24

closure. This information may be is saved, setting the status of the the
position to Closed and removing the position from the list of open
positions.

4. User Interface: Maintain Applicants

‘U’

25

Table of Components

Control Name of
Control

Description

Tab Strip Applicant Allows user to flip to and from the notes form view.

ID Displays the selected applicant's ID; allows the recruiter to
enter information into this field.

First Name Displays the selected applicant's First Name; allows the
recruiter to enter information into this field.

Last Name Displays the selected applicant's Last Name; allows the
recruiter to enter information into this field.

Street Displays the selected applicant's Street Address; allows the
recruiter to enter information into this field.

City Displays the selected applicant's City of residence; allows
the recruiter to enter information into this field.

Zip This field will display the postal code or zip code. If a
nonnumeric code is added of 7 characters, it will be
unformatted before the text is stored in the database. On
return of the data from the database it will be reformatted.
e.g. A#A-#A#

Phone This field will automatically format numbers to the
required layout. The format mask will also stop the entry of
any key other than numbers and backspace.
e.g. (###) ###-####

Email Displays the selected applicant's Email Address; allows the
recruiter to enter information into this field.

Text Box

Notes Displays notes or memo of selected applicant; allows the
recruiter to enter information into this field. Up to 32
kilobytes of text can be added.

Check Box Available Displays the selected applicant's availability.

Combo
Box

Province Entry and display of the province/state in which the
company is located. Note: The combo box contains a
complete list of Canadian provinces and US states. This
field will be filled by selecting a province /state from the
list.

Applicant Lists all applicants in the agency database. By selecting an
applicant in the list the corresponding profile is displayed.
Note: This field is populated by the database.

Applicant Skill Displays skills associated with applicant.

List View

Skill Displays all available industry skills.

Command
Button

Add Adds selected industry skill to list of applicant skills.

Remove Removes selected industry skill from list of applicant skills.

‘U’

26

Feature List

View Applicants
To view an applicant form the user may select the applicant button on tool
bar, select View→ Applicant from the menu bar or use the shortcut keys
Ctrl+Q.

On loading the form the first record in the database will be loaded,
populating the data fields. The applicant list will also be populated with a
complete list of all applicants.

To view a specific applicants profile, select their name from the applicant
list. Once the name has been highlighted in the list the applicant profile is
returned from the database.

Add Applicants
Pressing Add button on the tool bar, clears the text boxes and enables
data entry , allowing the user to add a new applicant.

To add information on a new applicant's skills, the industrial skill is
selected from the list box. The Add button on the form is then used. to
associated the selected skill with the applicant. A list of associated skills is
displayed in the applicant skill list. If an incorrect skill is added it can be
removed by selecting the skill in the applicant skill list and pressing the
remove button.

Saving this new information will add the applicant information to the
database and add the applicant to the list of applicants. Selecting cancel
from the toolbar will return the user to the first applicant profile in the
database without saving the new applicant profile.

Edit Applicant
Pressing the Edit button on the tool bar will enable data entry into the
applicant's profile. Selecting save will then save the changes to the
database. During the edit proccess cancel can be pressed to exit the
applicant's profile without saving the changes.

‘U’

27

5. User Interface: Find Positions for Applicant

Applicant's name is displayed here, and the positions with matching skills are displayed here.

Table of Components

Control Name of
Control

Description

Applicants Displays a list of all applicants.List View

Positions Displays a list of positions and the number of matching skills.

Search Searches for positions with some of the same skills as the
selected applicant.

Command
Button

Close Takes the user back to the position form and the profile will
be displayed

Feature List
On form load a list of available applicants will populate the first list box.
The user may select an applicant by selecting a name from the list.
Pressing the Search button will populate the second list box with a list of
open positions for which the selected applicant has a matching skill set.
The positions are listed with the highest percentage of matching skills on
top.

The recruiter may find details of one of the matching positions by
highlighting the position and clicking the Close button. This will load the
Positions form, displaying all the details associated with the selected
position.

‘U’

28

6. User Interface: Apply for Online Position

‘U’

29

Table of Components

Control Name of
Control

Description

Position Display a list of all the agencies' open positions.Screen 2:
List Box Position Skills Displays a list of associated skills for selected position.

Position ID Displays the selected position ID

Position Title Displays the selected position title

Description Displays the selected position description

Contact Name Displays the selected position contact name

Contact Phone Displays the selected company phone number

Screen 2:
Text Box

Date Opened Displays the selected position’s date opened.

Screen 2:
Button

Apply On selecting the apply button the selected positions ID
and title fields is passed to the application page and
the application page loaded.

Position ID Displays the selected position ID.

Position Title Displays the selected position title.

Screen 3:
Text Box

Applicant ID Allows the applicant to add their ID.

Screen 3:
Button

Apply Sends the information to the database.

Feature List
Applicant enters the virtual placement agency home page and clicks the
‘Enter’ hyperlinked text. The second screen is loaded and a list of all VPA
positions is displayed in the list box. The applicant then selects a position
of interest. The selected position profile is then displayed in the text fields.
The applicant can then issues the apply for the position by clicking the
'Apply' button’.

‘U’

30

The third screen is then loadeddisplaying the current date and position
ID. To apply for this position, the applicant enters their ID and then clicks
the 'apply' button. A thank you screen is displayed with applicant’s full
name displayed after application is received.

‘I’

31

‘I’

32

1. Application Goals and Objectives

Main Purpose

The goal of this project is to develop an enterprise application that will allow the recruiting staff at
Virtual Placement Agency (VPA) to manipulate information on job openings and placements
managed by the agency. This will require the tracking of job postings, hiring companies, and
applicants.

Business Objectives

• To track and maintain the three major components of the business : Companies,
Applicants, Positions.

• Match applicants to available positions.
• Allow applicants looking for employment to access information on available job openings

by accessing the VPA's website.

Technical Objectives

• Formalize the design of the software using UML modeling techniques and the GUIDS
methodology.

• Follow and object-oriented design methodology to ensure the application is properly
defined before it is built.

• Use Microsoft Windows GUI Standards to develop a user-friendly interface.
• Provide a software environment that operates effectively with Microsoft Windows NT

Server, Windows 98 and Access 97.
• Design scalable application that can be expanded as the agency grows.
• Develop a distributed component-based system that runs on a client/server network .
• Develop Active X components, using Visual Basic 6, that are managed by using Microsoft

Transaction Server (MTS).
• Creation of the web enabled application using Active Server Pages (ASP).

‘I’

33

2. Application Architecture

User Services Business Services Data Services

Three Tiered Service Model

The classes in the Data Services section are stateless (ie they have no properties). The
difference between the methods in the Data Services classes and those of the Business
Services is that the methods in Data Services classes are SQL statements, which retrieve
data from or update data to the database via the DataAccess Object. The DataAccess
object is responsible for the actual data transfer with the database. The SQL statements
are discussed in the D document.

Class Method Description

Connect() Opens a connection to the database

Disconnect() Closes the database connection

Retrieve() Uses the open database connection to
retrieve data from the database

DataAccess
Object

Update Uses the open database connection to send
data into the database.

3. Component Distribution
The proposed system will compose of 5 components as shown in the component
diagram. The components will be distributed as follows. The user interface exe and the
business object dll will both reside on the client machines. The Data Access Component
dll will be located on the NT Server with the database. To allow web access Active Server
Pages (ASP) are being used to pass information over the internet. These ASP's need to
connect to the business objects before being passed to the data access component.

cCompantDT

SaveDT()
GetListDT()
GetProfileDT()

frmCompany

cApplicantDT

SaveDT()
GetListDT()
GetProfileDT()
GetAvailableListDT()

frmApplicant

CSkillsDT

GetListDT()

DataAccessObject

Connect()
Disconnect()
Update()
Retrieve()

MDIFrom cPosit ionsDT

SaveDT()
GetPosit ionsperCompanyDT()
GetProfileDT()
GetListDT()
GetOpenStatusListDT()
SearchOpenStatusListDT()
SubmitApplicationDT()

Active Server Pages

frmPosition

frmSearch

frmClosePosit ion

cCompany

cApplicant

cPosit ions

cSkill

colSkills

‘I’

34

Therefore a second business object dll component will be located on the internet
information server (IIS) to service the ASP's.

Component Diagram Elements

Component
Name

Objects Realized Description

User Interface exe MDIform, frmPosition,
frmCompany, frmSplash,
frmSearch, frmApplicant,
frmSkills

Applications used by user - connected to
business object dll (on client machine).

Business Object dll
(on Client Machines)

cPositions, cCompany,
cApplicant, cSkills

Sends and receives information from the
User Interface exe. Passes information to
Data Access Object dll.

Active Server Page Active Server Pages Displayed in internet browsers as an
interactive web page.

Business Objects dll
(on IIS Server)

cPositions Sends and Receives information from
active server page. Passes information to
Data Access Object dll.

Data Access
Component dll

cPositionsDT,
cCompanyDT,
cApplicantDT, cSkillsDT,
DataAccess Object

Sends and receives data from both
business objects dll.

User Int erface
exe

Business Objects dll
(on Client Machines)

Business Objects dll
(on IIS Server)

Active Server
Pages

Data Access
component dll

‘I’

35

4. Deployment Diagram

Deployment Diagram Elements

Node Description

Client Machines Contains the user interface and business object components.

NT Server (with
MTS and IIS)

Contains the database and data access objects managed by Microsoft
Transaction Server (MTS). The server will also contain the Active Server
Pages (ASP) and a business object component to service the ASP's.

Web
Browsers

Client
Machines

Client
Machines

Client
Machines Web

Browsers
NT Serve r (w it h MTS

and IIS)

‘D’

36

‘D’

37

1. Application Goals and Objectives

Main Purpose

The goal of this project is to develop an enterprise application that will allow the recruiting staff at
Virtual Placement Agency (VPA) to manipulate information on job openings and placements
managed by the agency. This will require the tracking of job postings, hiring companies, and
applicants.

Business Objectives

• To track and maintain the three major components of the business : Companies,
Applicants, Positions.

• Match applicants to available positions.
• Allow applicants looking for employment to access information on available job openings

by accessing the VPA's website.

Technical Objectives

• Formalize the design of the software using UML modeling techniques and the GUIDS
methodology.

• Follow and object-oriented design methodology to ensure the application is properly
defined before it is built.

• Use Microsoft Windows GUI Standards to develop a user-friendly interface.
• Provide a software environment that operates effectively with Microsoft Windows NT

Server, Windows 98 and Access 97.
• Design scalable application that can be expanded as the agency grows.
• Develop a distributed component-based system that runs on a client/server network .
• Develop Active X components, using Visual Basic 6, that are managed by using Microsoft

Transaction Server (MTS).
• Creation of the web enabled application using Active Server Pages (ASP).

2. Type of database

Due to the low user traffic and the scalability of the n-tiered design Microsoft Access will be used
for the database. The alternative databases would significantly increase the application cost.

‘D’

38

3. Entity Relationship Diagram

4. Table Fields and Descriptions

Table Field Name Data Type Key Required

Applicant ID AutoNumber Primary Key Yes
FirstName Text Yes
LastName Text Yes
Address Text Yes
City Text Yes
ProvinceID Number Foreign Key Yes
PostalCode Text Yes
Phone Text Yes
Email Text Yes
Available Yes/No Yes

Applicant

Notes Memo Yes
CompanyID AutoNumber Primary Key Yes
CompanyName Text Yes
Address Text Yes
City Text Yes

Company

ProvinceID Number Foreign Key Yes

‘D’

39

PostalCode Text Yes
PhoneNumber Text Yes
Notes Memo Yes
PositionID AutoNumber Primary Key Yes
PositionTitle Text Yes
Status Text Yes
OpenDate Text Yes
CloseDate Text Yes
ReasonClosed Text Yes
ContactName Text Yes
ContactPhoneNumber Text Yes
PositionDescription Text Yes
Notes Memo Yes

Position

CompanyID Number Foreign Key Yes
SkillID AutoNumber Primary Key YesSkill
Name Text Yes
ProvinceId AutoNumber Primary Key YesProvince
ProvinceName Text Yes
ID AutoNumber Primary Key
ApplicantId Number Foreign Key
Date of Application Date/Time

Junction

PositionId Number Foreign Key
ID AutoNumber Primary Key
ApplicantId Number Foreign Key

Junction
SkillApplicant

SkillId Number ForeignKey
ID AutoNumber Primary Key
PositionId Number Foreign Key

Junction
SkillPosition

SkillId Number ForeignKey

5. List of Queries Required in the System

Class Method Description

SaveDT() Generates an SQL statement that will pass a company
ID, as an argument and a profile to the data access
object as a variant array. Depending on the ID the
data access object will either update an existing
record set or add a new record set.

GetListDT() Generates an SQL statement that will create and
return a list of companies as a string array.

cCompanyDT

GetProfileDT() Generates an SQL statement that will pass a company
ID as an argument and return specific company
profile as a variant array.

cPositionDT SaveDT() Generates an SQL statement that will pass a position
ID, as an argument and a profile to the data access
object as a variant array. Depending on the ID the
data access object will either update an existing
record set or add a new record set.

‘D’

40

GetPositionsper-
CompanyDT()

Generates an SQL statement that will pass the
selected company's ID as an argument and return
specific list of company positions that are open. The
data is returned as a string array.

GetProfileDT() Generates an SQL statement that will pass a position
ID as an argument and return specific position
profile as a variant array.

GetListDT Generates an SQL statement that will create and
return a list of positions as a string array.

GetOpen-
StatusListDT()

Generates an SQL statement that will return a list of
open positions as a string array.

SearchOpenStatus-
ListDT()

Generates an SQL statement that will search the open
position list for a match to an applicant. The SQL
statement will pass a list of skills as a string array and
return a list of positions as a string array.

Submit-
ApplicationDT()

Generates an SQL statement that will pass the web
based job application information to the database.
The SQL statement will then match the user ID to the
user ID's in the database. If a match is found the
information is saved and the user name returned, if
no match is found an error message is returned. The
data will be passed as a variant array and the
returned data passed as a string..

SaveDT() Generates an SQL statement that will pass an
applicant ID, as an argument and a profile to the data
access object as a variant array. Depending on the ID
the data access object will either update an existing
record set or add a new record set.

GetListDT() Generates an SQL statement that will create and
return a list of applicants as a string array.

GetProfileDT Generates an SQL statement that will pass an
applicant ID as an argument and return specific
company profile as a variant array.

cApplicantDT

GetAvailable-
ListDT()

Generates an SQL statement that will return a list of
available applicants.

Connect() Makes the connection to the database.

Disconnect() Disconnects from the database.

Update() Presents the SQL statement and data to the database.

DataAccess-
Object

Retrieve() Returns data requested by the SQL statement.

cSkillDT GetListDT() Generates an SQL statement that will create and
return a list of skills as a string array.

‘S’

41

‘S’

42

1. Application Goals and Objectives

Main Purpose

The goal of this project is to develop an enterprise application that will allow the recruiting staff at
Virtual Placement Agency (VPA) to manipulate information on job openings and placements
managed by the agency. This will require the tracking of job postings, hiring companies, and
applicants.

Business Objectives

• To track and maintain the three major components of the business : Companies,
Applicants, Positions.

• Match applicants to available positions.
• Allow applicants looking for employment to access information on available job openings

by accessing the VPA's website.

Technical Objectives

• Formalize the design of the software using UML modeling techniques and the GUIDS
methodology.

• Follow and object-oriented design methodology to ensure the application is properly
defined before it is built.

• Use Microsoft Windows GUI Standards to develop a user-friendly interface.
• Provide a software environment that operates effectively with Microsoft Windows NT

Server, Windows 98 and Access 97.
• Design scalable application that can be expanded as the agency grows.
• Develop a distributed component-based system that runs on a client/server network .
• Develop Active X components, using Visual Basic 6, that are managed by using Microsoft

Transaction Server (MTS).
• Creation of the web enabled application using Active Server Pages (ASP).

2. Code Estimates
Coding Estimates

Complexity
Type Component High Medium Low

Business Servers - Data Centric
cCompanyDT 1
cPositionsDT 1
cApplicantDT 1
cSkills 1
Total Components 0 4 0

Estimating Guideline (Hrs) 20 10 10

‘S’

43

Total Business Servers - Data Centric 0 40 0

Business Servers - UI Centric
cCompany 1
cPositions 1 1
cApplicants 1
cSkills 1 1

Total Components 0 4 2

Estimating Guideline (Hrs) 15 10 5

Total Business Servers - UI Centric 0 40 10

Utility Servers
CDataAccess 1
CError 1
CUI 1

Total Components 1 2 0

Estimating Guideline (Hrs) 30 15 8

Total Utility Servers 30 30 0

UI - Forms
frmCompany 1
frmPositions 1
frmApplicants 1
frmPositionClosed 1
frmMDIForm 1
frmSearch 1
Active Server Page (ASP) 1

Total Components 3 3 1

Estimating Guideline (Hrs) 30 20 10

Total UI - Forms 90 80 10

UI - Web
Applicant.ASP 1
Applicantdb.ASP 1

Total Components 0 2 0

Estimating Guideline (Hrs) 30 20 10

Total UI - Web 0 40 0

Total Hours 120 230 20 370

‘S’

44

3. Implementation Plan

Estimated Hours
Principal Software Start End

Resource Consultant Developer Week Week
Software Development

Project Management
Project Tracking and Status Reporting DDS 40 5 13
Deliverable Review DDS 40 5 13

Test Environment
Install hardware/software (e.g.
IIS,MTS,SQL Sever, Oracle)

EGG 5 5

Configure software EGG 5 5
Implement backup/restores EGG 5 5

Test Database 16 5 5
Create schema AAA 16 5 5
Populate test database AAA

Code Reviews
Code Review Preparation AAA,BBB,CCC,

DDDD,EEE,FFF
14 6 13

Code Walkthrough Sessions AAA,BBB,CCC,
DDDD,EEE,FFF

14 6 13

Coding
Utility Servers
cDataAccess AAA,BBB 30 7 7
cError AAA,BBB 15 8 8
cUI AAA,BBB 15 8 8

Business Servers - Data Centric
cCompanyDB CCC,DDD 10 7 7
cPositionsDB EEE,FFF 10 7 7
cApplicantDB CCC,DDD 10 7 7
cSkillsDB EEE,FFF 10 7 7

Business Servers - UI Centric
cCompany CCC,DDD 10 9 9
cPositions CCC,DDD 5 9 9
cApplicant EEE,FFF 5 9 9
cSkills EEE,FFF 10 9 9

UI - Forms
frmCompany AAA,BBB 20 10 11
frmPositions CCC,DDD 30 10 11
frmApplicant EEE,FFF 30 10 11
frmSkills AAA,BBB 10 10 11
frmMDIForm CCC,DDD 30 10 11
frmSplash EEE,FFF 30 10 11
frmSearch AAA,BBB 10 10 11

‘S’

45

UI - Web
Applicant.asp AAA,BBB 20 12 13
Applicantdb.asp AAA,BBB 20 12 13

Total Software Development 80 390

Project Management
Project Tracking and Status Reporting DDS 15 11 15
Deliverable Review DDS 15 11 15

System Test
Establish System Test Database AAA 10 11 11
Create Test Plan DDS 10 11 11
Create Test Data AAA 10 11 11
Build Application BBB 10 11 11
Execute Test TST 12 13
Implement Change Requests AAA,BBB,CCC,

DDDD,EEE,FFF
40 12 13

Sign-off CLM 13 13

User Acceptance Test
Establish User Acceptance Test Database AAA 10 13 13
Create Test Plan TST 13 13
Create Test Data AAA 10 13 13
Build Application BBB 10 13 13
Execute Test TST 14 15
Implement Change Requests AAA,BBB,CCC,

DDD,EEE,FFF
40 14 15

Sign-off CLM 15 15

Production Environment
Install hardware/software (e.g.
IIS,MTS,SQL Sever, Oracle)

EGG 13 15

Configure software EGG 13 15
Implement backup/restores EGG 13 15
Implement security strategy EGG 13 15
Create production database EGG 13 15
Initialize database with reference data EGG 13 15
Secure production database EGG 13 15

Deployment
Create application setup programs BBB 10 13 15
Test deployment BBB 10 13 15
Install application on client machines EGG

Total Software Testing and
Deployment

40 160

Conversion
Complete detailed mapping of conversion
data sources

CCC,DDD 20 9 9

Develop conversion utilities CCC,DDD 80 10 11

‘S’

46

Test conversion utilities CCC,DDD 40 12 12
Convert data CCC,DDD 20 13 13
Verify converted data TST 13 13

Total Conversion of Data to New
Format

0 160

Project Management
Project Tracking and Status Reporting DDS 20 16 20
Deliverable Review DDS 20 16 20

Training
Create training plan EEE,FFF 20 16 16
Develop training materials EEE,FFF 80 17 18
Schedule training EEE,FFF 20 18 18
Train users EEE,FFF 40 19 20

Total User Training and Support 40 160

Initials:
DDS-Project
Manager
AAA-Developer
BBB-Developer
CCC-Developer
DDD-Developer
EEE-Developer
FFF-Developer
TST-Client Tester
CLM-Client
Manager
EGG-Client
Technician

4. Coding Conventions

Database

• Each field will be prefixed with the table name.

• Table names and field names will NOT contain spaces.

• Referential integrity and business rules (i.e. required fields, duplicates allowed, etc.) will
be defined within Access.

 Note: Although this is contrary to the advice given in Doing Objects in Visual Basic 6,
many large organizations with established Data Base Administration (DBA) organizations
require referential integrity and business rules to be included in the database. In theory,
all access to the data should be through the business objects, however, in practice, this
unfortunately is not usually the case. Therefore, until full commitment to the object-
oriented approach is established throughout an organization, referential integrity and
business rules will likely be implemented in the database as well as the application. The
disadvantage to this approach is increased maintenance, because as business rules

‘S’

47

change, the changes will have to be implemented in the business objects as well as the
database.

• ID fields will be type Long.

• It is generally preferred that the ID field be used as foreign keys (reference fields).
Foreign Keys will use the name of the field in the referenced table.

 Visual Basic

 General Coding

• All modules will begin with the following:

‘ Class/Form/Module Name:
‘ Author:
‘ Date:
‘ Description:

• All routines (subroutines, functions and property procedures) begin with a brief comment
describing the functional characteristics of the routine as well as the parameters passed to
and returned from the routine:

‘ Purpose:
‘ Parameters:
‘ Returns:
‘ Sets:

• All modules include Option Explicit to require variable declarations.

• Routines are ordered as follows:

 Property Procedures
 Initialize and Terminate Event Procedures
 Public sub and function procedures (in alphabetic order)
 Private sub and function procedures (in alphabetic order)

• Use indents to show nesting program structures.

• Declare all necessary variables at the top of each procedure.

• Place error handling in each procedure.

• Use constants rather than magic numbers and literals within the code.

• Strings should be placed in the resource file and not hard coded.

• Use a “.” operator between a form and a control rather than the “!”.

• Case statements should include a Case Else.

• Use the line continuation character for long lines.

• Don’t put multiple statements on one line.

• Explicitly state the scope of variables and procedures (i.e. Public or Private)

Naming Conventions

Object Naming

‘S’

48

Prefix Object Type

ani Animated button
cbo Combo box
chk Check box
cmd 3D command button
col Collection
ctl Control
dat Data
db Database
dbcbo Data-bound combo box
dbgrd Data-bound gid
dblst Data-bound list box
dbc Data combo
dgd Data grid
dbl Data list
drp Date combo box
dtp Date picker
dir Dir list box
dlg Common dialog
drv Drive list box
fil File list box
frm Form
fra Frame
gau Gauge
gra Graph
grd Grid
flex Hierarchical flexgrid
hsb Horizontal scroll bar
img Image
ils Image List
key Keyboard key status
lbl Label
lin Line
lst List box
lsv List View
lwchk Lightweight check box
lwcbo Lightweight combo box
lwcmd Lightweight command button
lwfra Lightweight frame
lwhsb Lightweight horizontal scroll bar
lwlst Lightweight list box
lwopt Lightweight option button
lwtxt Lightweight text box
lwvsb Lightweight vertical scroll bar
mnu Menu
mvw Month view
opt Option button
pic Picture box
pnl 3-D panel
prg Progress bar
ps Prepared statement
rpt Report

‘S’

49

rtf Rich Text Box
rs Result set
shp Shape
sld Slider
spn Spin control
sta Status bar
sys SysInfo
tab Tab Strip
tlb Toolbar
tmr Timer
tre Treeview
txt Text box
vsb Vertical scroll bar

Menu Naming
Menus should be named similarly to their caption. Each item in the menu should be in a control
array that is named using the menu name and the suffix Item (EditItem, FileItem, etc.)

Module Naming
The files for Forms, Interfaces, and Classes and Modules should be named for what objects they
work with. The objects should be named with the following prefixes

Prefix Object Type

frm Form
C Classes
I Interfaces
M Modules

Object Method Naming
Method names are generally denoted in Title Case with a Verb or Verb/Noun
combination. Methods, which perform the same function for different objects, should be
named consistently.

Examples:
FillForm
CheckRow
Enable
Notify
Display
Add
Remove

Variable Naming
A variable name consists of three components:

‘S’

50

The scope prefix:

Prefix Scope

g Global
m module-level
st Static
(none) local or parameters

The data type prefix:

Prefix Data Type

b Boolean
bt Byte
col Collection
d Double - 64 bit signed quantity
dt Date+Time
e Error
f Float/single - 32-bit signed floating point
h Handle
i Integer
l Long - 32 bit signed quantity
obj Object
s String
v Variant
udt User defined type

The variable purpose:
A logical description of the variable usually in Title Case. Should be long enough to
describe its purpose.

Examples:
m_objCurrency Module level object variable
sFieldName Local string variable
bIsDirty Local boolean variable
m_bIsDirty Module level boolean variable
g_objApp Global object variable

Constant Naming
Constants names are uppercase with “_” between words.

Constants used to identify indexes in control arrays should be prefixed with the
appropriate prefix for the type of control it represents.

Examples:
cboCURRENCY_INVERTED
txtCURRENCY_STATUS
ERR_INVALID_NULL
MV_FIRST

‘S’

51

5. Quality Assurance
Code reviews are to take place with the development team. During this review, each of the
following questions will be discussed:

• Is a consistent user-friendly interface applied?
• Did the user-interface appropriately enable or disable functionality based on the state of the

application?
• Is a standard module used for duplicate constants, sub procedures, functions, etc.?
• Are standard object and variable naming conventions consistently followed throughout the

application?
• Is program logic put in place to ensure invalid data was not passed to the database?
• Does the application address the three major sections (Company, Position, Applicant)?
• Does the application use an MDI environment?
• Does the application use menus and a toolbar?
• Does the application use access keys whenever possible?
• Were unexpected errors encountered during acceptance testing?

	GUIDS Document
	Table of Contents
	1. Application Goals and Objectives
	2. Use Cases
	3. Object Model
	4. Implementation Class Diagram
	5. Table of Business Object Methods
	6 Table of Object Relationships
	1. Application Goals and Objectives
	2. User Interface: Maintain Companies
	3. User Interface: Maintain Positions
	4. User Interface: Maintain Applicants
	5. User Interface: Find Positions for Applicant
	6. User Interface: Apply for Online Position
	1. Application Goals and Objectives
	2. Application Architecture
	3. Component Distribution
	4. Deployment Diagram
	1. Application Goals and Objectives
	2. Type of database
	3. Entity Relationship Diagram
	4. Table Fields and Descriptions
	5. List of Queries Required in the System
	1. Application Goals and Objectives
	2. Code Estimates
	3. Implementation Plan
	4. Coding Conventions
	5. Quality Assurance

